
FACETS – a Framework for Parallel Coupling of
Fusion Components

John R. Cary, Ammar Hakim, Mahmood Miah, Scott
Kruger, Alexander Pletzer, Svetlana Shasharina,

SrinathVadlamani
Tech-X Corporation,

Boulder USA

Ronald Cohen, Tom Epperly, Tom Rognlien
Lawrence Livermore National Laboratory,

Livermore USA

Alexei Pankin
Lehigh University,
Bethlehem, USA

Richard Groebner
General Atomics,
San Diego, USA

Satish Balay, Lois McInnes, Hong Zhang
Argonne National Laboratory,

Argonne, USA

Abstract— 1 Coupling separately developed codes offers an
attractive method for increasing the accuracy and fidelity of the
computational models. Examples include the earth sciences and
fusion integrated modeling. This paper describes the Framework
Application for Core-Edge Transport Simulations (FACETS).

Keywords-integrated fusion modeling; components; framework;
coupling

I. INTRODUCTION
Computational efforts in the fusion and other communities

have traditionally concentrated on solving physics models
within distinct spatial regions, using approximations valid
within well-defined ranges of temporal and spatial scales. This
resulted in the development of numerous independent
computational applications, each specializing in these different
scales. Examples include radio-frequency waves (RF)
propagation, for which the fundamental period is sub-
nanosecond, magnetohydrodynamics (MHD), for which the
period can range from microseconds to milliseconds, and
gyrokinetic microturbulence (GK), for which time scales are
sub-millisecond. At the other extreme of the time scale
spectrum are transport calculations, which cover 1000 seconds
or more for ITER. (The spatial scales are also substantially
different, again much smaller for RF, MHD, and GK than for
overall transport.)

This project was supported by DOE grants DE-FC02-07ER54907, DE-FG02-
05ER84192 and Tech-X Corporation. This work performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Figure 1. FACETS is about integrating core, edge and wall of tokamaks.

The problem of coupled core-edge transport simulations
exemplifies the multiphysics challenges faced by the fusion
program. The core and edge regions are very different in their
spatial and temporal scales. Core plasma transport is
dominated by turbulence with relatively short spatial scales.
This transport can be summarized in terms of surface fluxes for
the basic moments (densities, temperatures, and momenta) and
so is essentially one-dimensional (radial). On the open field
lines, which contact material walls, perpendicular and parallel

transport compete, so that edge transport is two-dimensional
and essentially kinetic. Thus, whole-device modeling requires
the development of a multiphysics application able to use
different computational approaches in different regions of the
plasma.

The FACETS project [1-2] is the first significant effort
aimed at combining the aspects of multi-physics and multiple
computational regions (core, edge, and wall) within a single
executable. It is designed to leverage the massively parallel
computing resources available at supercomputing leadership
class facilities and/or cover the multiple regions composing a
tokamak, and by doing so enabling high fidelity integrated
modeling simulations. Because integrated simulations aim to
model the tokamak on a time scale much longer than many of
the internal equilibration time scales, the framework must
allow for implicit coupling.

The US Department of Energy, realizing the challenge of
full-device and multiphysics modeling, has funded two other
SciDAC integration projects, [3-5] that are addressing other
computer science and physics aspects of coupled systems.

II. FACETS REQUIREMENTS
FACETS software consists of a framework and utilities.

The framework is the software that composes the fusion
computational modules and advances them forward in time.
Utilities support common build and test system, tools to
standardize the components outputs, and tools to perform
visualization.

The design of the framework and utilities has been driven
by the requirements - some of which are common to all
integrating efforts and some are specific for FACETS.

Common requirements include abilities to:

1) Incorporate legacy codes
2) Develop new fusion components
3) Use conceptually similar codes interchangeably
4) Incorporate components written in different languages

In addition FACET has adopted the requirements that the
framework be able to:

5) Work well with the most rapid (simplest) computational
models as well as be able to us the most computationally
intensive models

6) Be applicable to implicit coupled-system advance
7) Take maximal advantage of parallelism by allowing

concurrent execution
Requirement (5) leads to the need to provide tight coupling

in order to accommodate the simplest computational
components, which return values rapidly. Tight coupling means
that components interact communicate in a synchronous and
rapid (low latency) manner. This requires interaction through
memory (rather then exchange files). In addition, tight
coupling facilitates exception and error handing and lands
better to the dynamic load balancing of components.

At the same time, to incorporate the more computationally
demanding components, it is also desirable to keep the
components in memory. As an alternative approach, one could

have chosen to launch components using parallel job
commands. However, this has a disadvantage of causing
additional run-time overhead associated with memory
allocation, data initialization, loading data from disk, and
perhaps, the need to re-compute Jacobians.

Requirement (6), along with flexibility, requires a
framework that allows runtime construction of algorithms, in
order to be able to explore multiple coupling and time advance
strategies. Furthermore, one must be able to recover from
failures.

In addition, to provide better performance and further
flexibility (compared to components granularity), FACETS is
designed to have:

8) Construction process that allows for direct memory access
9) Separation of algorithms from data for algorithms reuse

and aggregation
10) Flexible means for defining multiple types of integrated

simulations without code recompilation
11) Run time discoverable implementations and instances

At present, only small amounts of data are being transferred
between components – largely a few scalars and some small
vectors. Hence there is presently little need for packing bulk
data for data transfers in FACETS, as reflected by the current
interface described below. Despite the low amount of data
moved, the implicit coupling has required low latencies, and so
the data transfer is performed directly from processor to
processor without any intermediate processing using a single
MPI Send/Recv.

In what follows we describe FACETS components,
FACETS initialization process, composition language and
support for parallel concurrent executions. We also describe
the first coupling results and our next challenges.

III. FACETS FRAMEWORK

A. FACETS Components
At present, the FACETS framework has a component for

core transport (FACETS::Core), neutral beam sources
(NUBEAM), embedded turbulence (GYRO), and edge
transport (UEDGE). In the near term, we will be incorporating
a component for wall modeling (WALLPSI) and
radiofrequency sources (TORIC). Here we define what is
meant by a component, and discuss how we brought these
components into our framework.

Conceptually, a FACET component is a unit of simulation
which contains data representing its state and has agreed-upon
interfaces. These interfaces define initialization and
finalization, allocation of parallel resources, time update, data
access and data output methods.

The whole initialization process (see Table 1) involves
multiple steps. First, components set up logging files and set
their MPI communicator. Then they allocate internal memory
and build internal data structures. Next, they set up their
algorithms by calling buildUpdaters function and
initialize their fields by calling initialize. This function

gets called at every new run and does not get called if the
component restores itself from a stored state.

Initialization/Finalization Interface
int setLogFile(const string& lf);
int setMpiComm(long comm);

int readParams(const string& infile);
int buildData();
int buildUpdaters();
int initialize();

int finalize();

Table 1. Initialization/finalization interface of FACETS components.

The update interface (see Table 2) allows one to advance
the state of a component in time as prescribed by their
standalone physics behavior and to set and get data exchanged
between components. If the advance of any component fails,
such as due to solver non-convergence, a component can be
reset to the last valid state.

Update Interface
int update(double t);

int revert();

Table 2. Update interface of FACETS components.

Data access interfaces (see Table 3) allow the setting and
getting scalar and array data. These interfaces will become
more general once FACETS starts using components that
require higher dimensionality interfaces:

Data Access Interface
int getRankOfInterface(const string& name, size_t&
ret)

int setDouble(const string& name, double val);

int getDouble(const string& name, double& ret)
const;

int setDoubleAtIndex(const string& name, size_t
ndims, const size_t[] indices, double val);

int getDoubleAtIndex(const string& name, size_t
ndims, const size_t[] indices, double& ret) const;

int setDoubleAtLoc(const string& name, size_t ndims,
const double[] loc, double val);

int getDoubleAtLoc(const string& name, size_t ndims,
const double[] loc, double& ret) const;

Table 3. Data access interface of FACETS components.

Dump/restore interfaces allows dumping and restoring
components from/to files and from/to particular file nodes:

Dump/Restore Interface
int dumpToNode(const string& file, const string&
groupNode) const;

int dumpToFile(const std::string& file) const;

int restoreFromNode(const string& file, const
string& groupNode);

int restoreFromFile(const std::string& file);

Table 4. Dump/restore interface of FACETS components.

All methods return an integer representing a code error (0
in case of no error) and pass a non-const reference to return an
actual value for get methods. This choice of error handling is
motivated by the need to support legacy codes that are written
in Fortran, which does not support exceptions.

Components that represent codes developed independently
from the FACETS framework are expected to implement the
interfaces described above. In order to incorporate them into
the framework, the FACETS team typically performs the
following steps. First, one demands that the component
developers provide or help generate a standalone test. Next the
component is wrapped into the interfaces described above and
a test of the wrapped component is included in the
component’s regression test system. The component is then
brought into FACETS: meaning that a FACETS-style driver
and FACETS-style input file is written for this component.
This driver and input file are then added to the FACETS tests
of regression tests and results are compared with the original
standalone test. Finally, a test for the coupled system is
developed to more rigorously test the interfaces and coupled
system.

At present, we have performed this process for three
standalone codes (UEDGE, NUBEAM, GYRO) and plan to do
the same for three more codes in the coming year (WallPSI,
BOUT++, and TORIC). The process is easily performed that
codes whose interfaces can be described with the current
interfaces. If the interfaces require higher dimensionality, then
we would need more work, but we feel that the process that we
currently use can be easily generalized.

Newly developed FACETS components (internal
components) implement the above methods in a way that
allows minimal indirect memory access, reuse of algorithms in
a plug-and-play manner and use the extensive FACETS
libraries for messaging, reading and writing data, grids, data
structures, interpolation, component composition, etc.

FACETS enforces a separation of data from the algorithms
that advance the data in time – updaters in the FACETS
language. A FACETS updater is an abstraction of an algorithm
or a function. Updaters have “in” and “out” data, which are
specified by a name and a data type. The “in” data comes from
components and the “out” data is put back in. The main
difference between internal FACETS components and updaters
is that updaters do not have an internal state, which is relevant
to the simulation: they just perform the component data update.
Such separation provides for more flexibility as updaters can be
reused in multiple components.

Different updaters implement different algorithms and each
component can have a complicated sequence of updaters. For
example, the user can specify that the data structures
representing the profiles of density and temperature be updated
using a Crank-Nicholson algorithm or some other, non-time-
centered algorithm. Another example is that the fluxes can be
linearly combined from several independent flux calculations.
Finally, the update step order may be used to combine the
various updaters in a particular order. If any update returns a
failure code, then all components are reset to their last valid
step, and the step is retried with a smaller time step to

automatically determine if the components’ internal solvers are
not converging due to an ill-conditioned advance.

Thus, the implementation of the update method of
internal components is delegated to updaters, which contain
direct references to the data structures of components and
manipulate them to dynamically advance the state of a
component. To provide this access, the buildUpdaters
method (called after memory allocation of all objects, and
before initialization or restoration of any object) implements
direct access to the memory locations of the data of another
object, so that at advance time, interface overhead disappears.

The coupling of components in FACETS is performed by
container components that have internal updaters that describe
the coupling algorithm. The updaters in the case take
advantage of the component interfaces described previously.
Each container component is responsible for assigning a subset
of its processors to the contained components, while all its
processors are available to all updaters as they need to
communicate between data structures that can live on any
processor of the container. Coupling order and frequency are
defined in the input file and performed via special ranks of
each component, which serve as points of the MPI send and
receive commands.

The structure of the FACETS components hierarchy is
shown on Figure 2. The base class FcComponent has the
interface defined above. It is an abstract class.
FcContainer derives from FcComponent and introduces
the idea of hierarchical components: it can have a list of
components within. FcUpdaterComponent introduces
FACETS data structures and updaters. Components at this
level delegate their update to the update methods of the
updaters.

In order to be able to distinguish between different kinds of
components, we also introduce abstract classes FcWallIfc,
FcCoreIfc, and FcEdgeIfc (and more as needed). Each
such class basically adds a class flavor that would allow
imposing correct composition rules (for example, one can
prohibit an edge component to contain a core component etc).
These interfaces have methods that are very specific to the
kinds they define. For example, FcCoreIfc should have the
following methods setting and getting a particular variable (for
example, energyFlux_CE_electrons) and add them
into a map that would associate setDouble and
getDouble methods with these functions:
FEdgeIfc : public FcComponent{

 FcEdgeIfc():FcComponent(){

 this->registerSetMethod

 ("energyFlux_CE_electrons",

 &FcEdgeIfc::setEnergyFlux);

 this->registerGetMethod

 ("energyFlux_CE_electrons ",
 &FcEdgeIfc::getEnergyFlux);

 }

 virtual double getEnergyFlux() = 0;

 virtual setEnergyFlux(const double) = 0;

};

Any external component would then have to derive from a
particular interface (FcWallIfc, FcCoreIfc or
FcEdgeIfc) and implement pure virtual functions specific
for this kind of interface. For example, FcExtEdgeComp
will derive from FcEdgeIfc and will have to implement
getEnergyFlux and setEnergyFlux functions.

If the component is external (does not rely on FACETS
updaters and data structures) this derivation is enough (for
example, FcExtEdgeComp and FcExtWallComp on
Figure 1). If a component uses FACETS infrastructure it will
also have to derive from FcUpdaterComponent (for
example, FcCoreComp). This inheritance introduces the
diamond pattern, which is not dangerous as all inheritances are
virtual. Examples of existing external components are
FcWallPsiComponent and FcUEDGEComponent. An
example of an internal FACETS component is
FcCoreComponent.

Figure 2. The schematic FACETS components hierarchy. Grey boxes show
concrete components.

In order to tell container components what kind of
containees they can have, we also introduce container classes.
An example is the FcCoreEdgeContainer class, which
expects exactly one contained edge and one contained core
component if this type of container is specified.

B. Input Language
The FACETS input file describes the simulation

composition. As always, the input file has to contain the
parameters needed to describe the simulations. But for a
flexible application as described above, the input file must also
describe (1) the containment hierarchy, (2) the other objects
needed a particular object for its update. For this purpose
FACETS developed a simple XML-like language with allows
certain tags, setting global constants and a means to describe
numerical vectors.

The bulk of the input file is defining the simulation
components (their data structures, grids and updaters). In
addition, the input file describes how coupling is performed.
For example, the following input file defines a coupled core-
edge simulation. It starts with defining a top container
component facets containing two members core and edge
of kinds coreComponent and edgeComponent. Within
each item, the input specifies components updaters and data
structures being updated:

This is a top container with core and edge
<Component facets>
 kind = coreEdgeContainer
First child component
 <Component core>
 kind = coreComponent
Data structs of core
 <DataStruct qOld>
 kind = distArray1D
 onGrid = coreGrid
 </DataStruct>
Similar qNew is skipped
Updater calculation qNew from qOld
 <Updater accept>
 kind = linCombinerUpdater
 in = [qOld]
 out = [qNew]
 </Updater>
Manual load balancing
 load = 0.5
 </Component>
Second child component
 <Component edge>
 kind = udgeComponent
Manual load balancing
 load = 0.5
 </Component>

The keyword “load” instructs FACETS to manually
allocate processor (in the case, equally between the core and
edge components).

Coupling of components is performed by the updater,
myCoreEdgeUpdater, which is of kind,
explicitCoreEdgeUpdater. It specifies the names of
the parameters, which are passed from one component to
another:

Updater coupling core and edge
 <Updater myCoreEdgeUpdater>
 kind = explicitCoreEdgeUpdater
 coreName = core
 edgeName = edge
variables to pass from core to edge
 core2EdgeVars = ["heatFlux"]
variables to pass from edge to core
 edge2CoreVars = ["temperature"]

 </Updater>
</Component>

By default, the data exchange is performed after every time
step (once components advance by dt using their internal
updaters not shown in the example).

Using coreEdgeContainer as a kind in the facets
component enforces the framework to check for the presence of
exactly one core and exactly one edge component within.

C. Component Creation and Registries
For our dynamic discovery of components, we separate the

concepts into the 3 I’s: Interface, Implementation, and

Instantiation. At startup, constructors for all implementations
are stored in an associative array that allows one to construct
such an object from a string. Thus, upon parsing the above file,
and seeing that a component of kind extEdgeComponent
is needed, FACETS does a lookup of the name,
extEdgeComponent, and is returned a new instance of the
class, FcExtEdgeComponent, which has the name, edge.
That object is then given its section of the input file, which
describes how that object will be constructed, and it is put into
the component registry.

Having both implementation and instance registries
provides flexibility. An implementation registry provides a
mechanism discovery of available implementations. For
example, a core source provides the power input to the core
from some source, such as neutral beams or electromagnetic
radiation (RF). As such, there are multiple implementations,
including different implementations for the same physics but
having varying degrees of fidelity and computational intensity.

D. Support for Parallelism

Figure 3. Processor breakup for a core-edge simulation with embedded

turbulence.

FACETS provides several mechanisms to support
parallelism. The simplest supported parallelism is domain
decomposition, which is provided by a distributed array
facility. Here, a N-dimensional array is split automatically
over a given number of processors. This splitting is done using
an algorithm that tries to assign equal volume of data to each
processor, making the computational load on each processor
approximately equal. However, no attempt is made to equalize
the amount of data communicated across processors.

A more sophisticated form of domain decomposition is also
supported for use in embedded turbulence calculations. For
such problems a set of transport equations is solved on a one-
dimensional domain, the transport fluxes obtained at each time-
step from a local turbulence calculation. Each turbulence
calculation on a flux surface itself is very computationally
intensive and runs in parallel. Once it is complete, the
computed fluxes are communicated to the transport solver and
the solution is advanced. Hence, a special form of

decomposition, in which each flux surface is assigned many
processors, is needed.

This decomposition is done by introducing the concept of
multi-processor arrays. These arrays are created as follows.
First, a large set of processors is reserved for the transport
solver, which runs on, for example, a one-dimensional domain
divided into 32 cells. These processors are divided into 32 sets
of processors. Each of these sets is used in the turbulence flux
calculations itself. In addition, to allow for communication of
the fluxes back to the transport solver, the zero-rank of each set
is assembled into a communicator on which a distributed array
is allocated. This allows the communication of gradients and
values to the turbulence flux calculators and the fluxes back to
the transport solvers.

Figure 3 shows a planned processor distribution for a
FACETS simulation with a core component consisting of
embedded turbulence and beam sources, an edge component
and a wall component consisting of multiple wall segments. In
the first step, all available processors are split between the core,
edge and wall components. Then, in the core component the
processors are further split between the beam sources, itself a
Monte-Carlo task parallel component, and the turbulence
calculators using the multi-proc array facility described above.
The edge component splits up its share of processors in a
traditional domain decomposition fashion. The wall component
splits its share of processors among the wall segments, each
processor handling a set of wall tiles. Inter-component
communication is handled by the framework by exchanging
surfacial data needed for the coupling algorithm.

IV. FACETS UTILITIES

A. Language Interoperability
FACETS is using F90 modules representing turbulent

transport models such as glf23 and mmm95. In addition, it
brings in F90/Python codes such as UEDGE [6] and C-based
WallPSI. These codes are rewritten as libraries with several
methods exposed and wrapped into Babel’s SIDL [7] so that
they can be called from the C++ FACETS code.

B. Build System and Regression Tests
FACETS development environment imposes strict

discipline for individual developers. Prior to committing new
code to the SVN repository, one has to run the full set of
FACETS tests (fctests). They report violation in coding
standards (formatting, documenting, layering rules) as well as
failure to build or differences in numerical results. In addition,
these tests are run nightly and notify the team about the results
by an email.

C. Standard output and visualization
Validation and Verification efforts require a standard output

format. All FACETS components abide to the VizSchema [8-
9] standard, which uses HDF5 as its underlying file format.
Therefore, FACETS output data are portable across platforms,
including from 32 to 64 bit architectures. The HDF5 API
supports parallel write operations.

In addition to raw data, VizSchema also stores descriptive
metadata such as field names, time slice information, grid
resolution, etc. This enables any postprocessing application to
manipulate FACETS output data without the need for
additional, built-in knowledge. Additional markups/metadata
were developed to identify variables living on different
domains but which are conceptually the same. An example
would be the temperature field, which extends from the core
region to the edge. Establishing this connection is critical in
order to visualize multi-grid seamlessly data across the entire
domain.

Based on the VizSchema standard, we developed a data-
reading module for the VisIt visualization tool. Figure 4 shows
visualization of electron temperature coming from four
different regions of FACETS simulation: three coming from an
edge component and one from a core component.

Figure 4. Multi-domain visualization of electron temperature coming from
four regions from two FACETS components.

V. FIRST COUPLING RESULTS
We have performed the first coupled core-edge simulations

to validate FACETS solvers against experimental data. In these
simulations we have initialized the core and the edge
components from experimental data obtained from shot 118897
on the DIII-D tokamak at General Atomics Corporation. The
core component advances the one-dimensional transport
equations using a combination of fluxes from a reduced
turbulence model, a neo-classical transport model and a
combination of sources from beam heating, Ohmic heating and
inter-species equilibration. The edge component advances the
two-dimensional fluid equations using diffusivities that are
constant in time but spatially varying to create a transport
barrier near the separatrix. The components are coupled using
an explicit coupling scheme. In this scheme, the core and the
edge components are each advanced by a time-step and the
fluxes at the core-edge interface sent from the core to the edge
and the temperatures sent from the edge to the core. Using
these new boundary values the next time-step is executed.

Figure 5 shows results of the evolution of ion temperature
profiles from a FACETS simulation. The heavy cyan line
represents the initial experimental data and the heavy black line
represents the final experimental data, at the end of the shot.
The various other lines are FACETS obtained profiles. It is
observed that the ion temperature rises as seen in the
experiment and the agreement of the final profile is reasonable
given the simple diffusivity model in the edge and the fact that
the densities were not evolved in the simulation.

Figure 5. Ion profile evolution in a core-edge integrated simulation. Heavy

black line is the experimental profile at the end of the shot. The red line is the
profile at the end of the FACETS simulation.

VI. FUTURE DIRECTIONS FOR FRAMEWORK DEVELOPMENT
At present, we have incorporated the standalone codes

UEDGE, NUBEAM, and GYRO. Our current physics studies
are focused on improving the core-edge simulations described
previously to understand neutral fueling of the experimental
discharge along with the most important features of core-edge
modeling. We are also investigating high-fidelity core
transport simulations using embedded turbulence (GYRO) and
Fokker-Planck modeling of neutral beam sources (NUBEAM).

Manually assigning computer resources to each component
will become impractical as the complexity of FACETS, and the
number of components, continues to grow. In order to achieve
high scalability on Leadership Class Facility (LCF) computers
with 10,000-100,000 cores or more, there is a need to
automatically, and optimally spread processing power across
components.

Our first approach will be to initially (statically) assign
processing resources to each component through a negotiation
process implemented in FACETS. The number of processors
assigned to each component will depend on the total
availability of processors, the demands of other components,
and their intrinsic scalability characteristic. Processor allocation
will also need to take into account the restrictions imposed by
the components. For instance, some components may only be
capable or running on specific number of processors. This
approach will require extensions to our input language
vocabulary, which presently uses a single “load” parameter to

specify the allocation of processors relative to the total number
of available processors.

We also recognize that the above approach, while being a
significant improvement over manual load balancing, has some
shortcomings. In particular, to work effectively, it relies on the
scalability information of each component, which can be
inaccurate and/or be highly dependent on specific hardware or
simulation conditions. Thus, the execution time of an implicit
solver advancing plasma profiles may be highly sensitive to the
prevailing plasma conditions, which change from time slice to
time slice. Therefore, we also anticipate the need at some point
for dynamic load balancing. Here, we have much to learn from
computer science where similar challenges are encountered.
Consider for instance web servers and multi-tasking in modern
operating systems, which distribute system resources to tasks,
typically based on a first-come-first-served scheduling
algorithm. However, it is important to recognize that in contrast
to computer science use-cases, FACETS tasks are tightly
coupled, with information being exchanged across tasks and
synchronization barriers preventing the independent execution
of tasks in arbitrary order. Therefore, we regard this as being
one of our greatest challenges.

In addition to attention to dynamic balancing, the FACETS
teams started collaboration with the SWIM and CPES teams to
identify the particular niches that each of the projects addresses
and come up with a unified plan to face the challenge of the
integrated modeling.

VII. SUMMARY AND COMPARISON WITH OTHER
APPROACHES

FACETS provides a flexible infrastructure for creating
tightly coupled parallel simulations. Its approach is to
incorporate legacy components by requiring a standard wrapper
for communication and a means to send and receive MPI
commands. Simulation is composed from an input file and
does not have to be recompiled for different configurations.
Newly developed FACETS components separate their state and
updating mechanism and delegate their update methods to
updaters. This separation promotes flexibility and code reuse.

FACETS is ported to multiple high-performance computers
including LCFs and allows components written in different
programming languages. FACETS stresses the need for
standardization including standard output format and standard
build system for all the components.

Other comparable fusion projects like SWIM and CPES are
somewhat distinct from FACETS, although the differences and
commonalities should be understood to move together to the
full device modeling in the future.

SWIM’s [3] framework called Integrated Plasma Simulator
(IPS) is a Python based system which provides very light
Python wrappers around legacy components for a lean interface
allowing starting, running and finalizing the components. IPS
has a set of common services (component registration and
monitoring, for example). Each component runs its simulation
to completion, dumps data in files in various formats, one of
which represents to complete plasma state, which then can be
used by other components. Thus, the system is well suited for

loose coupling. The benefit of this approach is leaving physics
codes untouched and using approaches familiar to physicists so
it will be attractive to many modelers. The possible drawback
of the approach is using file communication through a “bag” of
data, which can be overwritten inconsistently and might not
scale for a large number of parallel components.

CPES’s [5] framework called End-to-End Framework for
Fusion Integrated Simulations (EFFIS) pays a special attention
to workflows and treats coupled simulations as such. To
orchestrate the integrated simulations, EFFIS use the Kepler
[10] workflow engine. Another distinct feature of EFFIS is
unified approach to components I/O: each component uses
ADIOS [11] for its output, which allows hiding the differences
between the output data formats and choosing the underlying
I/O mechanism suitable for the used platform. Until recently,
data between components was exchanged using files, but the
recent advances indicate that EFFIS is moving to in-memory
coupling using Remote Direct Memory Access (RDMA). The
possible drawback of EFFIS is dependence on the Java-based
Kepler, which might present a problem on some
supercomputers. Another problem could the use of RDMA,
which is less familiar to computational scientists than MPI.

ACKNOWLEDGMENT
The authors thank the whole FACETS team and DOE

SCiDAC program.

REFERENCES
[1] S. Shasharina, J. R. Cary, A. Hakim, G. R. Werner, S. Kruger, A.

Pletzer,, “FACETS – A Physics Driven Parallel Component
Framework,” in the Proceedings of 2008 Workshop on Component-
Based High-Performance Computing (CBHPC 2008), Karlsruhe,
Germany, October, 2008.

[2] FACETS site: https://www.facetsproject.org/facets.
[3] W. R. Elwasif. D. E. Bernholdt , L. A. Berry and Don B. Batchelor,
“Component Framework for Coupled Integrated Fusion Plasma Simulation,”
HPC-GECO/CompFrame -- Joint Workshop on HPC Grid Programming
Environments and Components and Component and Framework Technology
in High-Performance and Scientific Computing, Montreal, Canada, October,
2007.
[4] SWIM site: http://cswim.org.
[5] CPES site: http://www.cims.nyu.edu/cpes.
[6] UEDGE: http://www.mfescience.org/mfedocs/uedge_man_V4.39.pdf.
[7] Babel site: https://computation.llnl.gov/casc/components/babel.html.
[8] Svetlana Shasharina, John R. Cary, Seth Veitzer, Paul Hamill, Scott
Kruger, Marc Durant, and David A. Alexander, VizSchema – Visualization
Interface for Scientific Data, IADIS International Conference, Computer
Graphics, Visualization, Computer Vision and Image Processing, 2009, p. 49.
[9] VizSchema site: https://ice.txcorp.com/trac/vizschema/wiki/WikiStart.
[10] Kepler site: http://kepler-porject.org.
[11] http://www.nccs.gov/2009/08/17/fusion-gets-faster/#more-3297.

